Illumination coherence engineering and quantitative phase imaging.

نویسندگان

  • José A Rodrigo
  • Tatiana Alieva
چکیده

Partially coherent illumination provides significant advantages such as speckle-free imaging and enhanced optical sectioning in optical microscopy. The knowledge of the spatial and temporal coherence is crucial to obtain accurate quantitative phase imaging (QPI) of specimens such as live cells, micrometer-sized particles, etc. In this Letter, we propose a novel technique for illumination coherence engineering. It is based on a DMD projector providing fast switchable both multi-wavelength and spatial coherence design. Its performance is experimentally demonstrated for QPI with different spatial coherence states.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative phase imaging with partially coherent illumination.

In this Letter, we formulate a mathematical model for predicting experimental outcomes in quantitative phase imaging (QPI) when the illumination field is partially spatially coherent. We derive formulae that apply to QPI and discuss expected results for two classes of QPI experiments: common path and traditional interferometry, under varying degrees of spatial coherence. In particular, our resu...

متن کامل

Rapid quantitative phase imaging for partially coherent light microscopy.

Partially coherent light provides promising advantages for imaging applications. In contrast to its completely coherent counterpart, it prevents image degradation due to speckle noise and decreases cross-talk among the imaged objects. These facts make attractive the partially coherent illumination for accurate quantitative imaging in microscopy. In this work, we present a non-interferometric te...

متن کامل

Coded aperture pair for quantitative phase imaging.

This Letter proposes a novel quantitative phase-imaging approach by optically encoding light fields into a complementary image pair followed by computational reconstruction. We demonstrate that the axial intensity derivative for phase recovery can be well estimated by a coded-aperture image pair without z axial scanning. The experimental results demonstrate that our approach can achieve higher ...

متن کامل

Quantitative phase imaging through scattering media by means of coherence-controlled holographic microscope.

A coherence-controlled holographic microscope (CCHM) enables quantitative phase imaging with coherent as well as incoherent illumination. The low spatially coherent light induces a coherence gating effect, which makes observation of samples possible also through scattering media. The paper describes theoretically and simulates numerically imaging of a two-dimensional object through a static sca...

متن کامل

Quantitative phase microscopy of biological samples using a portable interferometer.

This Letter presents the τ interferometer, a portable and inexpensive device for obtaining spatial interferograms of microscopic biological samples without the strict stability and the highly coherent illumination that are usually required for interferometric microscopy setups. The device is built using off-the-shelf optical elements and can easily operate with low-coherence illumination, while...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics letters

دوره 39 19  شماره 

صفحات  -

تاریخ انتشار 2014